Solution to Math4230 Tutorial 12

1. Show that

(a) For the function f(x) = ||x||, we have

$$\partial f(x) = \begin{cases} x/\|x\| & \text{if } x \neq 0, \\ \{d\|\|d\| \le 1\} & \text{if } x = 0. \end{cases}$$

Solution:

(a) For $x \neq 0$, the function f(x) = ||x|| is differentiable with $\nabla f(x) = x/||x||$, so that $\partial f(x) = \{\nabla f(x)\} = \{x/||x||\}$. Consider now the case x = 0. If a vector d is a subgradient of f at x = 0, then $f(z) \geq f(0) + d'z$ for all z, implying that

$$||z|| \ge d'z, \qquad \forall \ z \in \Re^n.$$

By letting z = d in this relation, we obtain $||d|| \le 1$, showing that $\partial f(0) \subset \{d \mid ||d|| \le 1\}$.

On the other hand, for any $d \in \Re^n$ with $||d|| \le 1$, we have

$$d'z \le \|d\| \cdot \|z\| \le \|z\|, \qquad \forall \ z \in \Re^n,$$

which is equivalent to $f(0) + d'z \leq f(z)$ for all z, so that $d \in \partial f(0)$, and therefore $\{d \mid ||d|| \leq 1\} \subset \partial f(0)$.

2. Consider a proper convex function F of two vectors $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. For a fixed $(\bar{x}, \bar{y}) \in \text{dom}(F)$, let $\partial_x F(\bar{x}, \bar{y})$ and $\partial_y F(\bar{x}, \bar{y})$ be the subdifferentials of the functions $F(\cdot, \bar{y})$ and $F(\bar{x}, \cdot)$ at \bar{x} and \bar{y} , respectively. (a) Show that

$$\partial F(\bar{x}, \bar{y}) \subset \partial_x F(\bar{x}, \bar{y}) + \partial_y F(\bar{x}, \bar{y}),$$

and give an example showing that the inclusion may be strict in general.

(b) Assume that F has the form

$$F(x, y) = h_1(x) + h_2(y) + h(x, y)$$

where h_1 and h_2 are proper convex functions, and h is convex, realvalued, and differentiable. Show that the formula of part (a) holds with equality.

Solution:

(a) We have $(g_x, g_y) \in \partial F(\bar{x}, \bar{y})$ if and only if

$$F(x,y) \ge F(\bar{x},\bar{y}) + g'_x(x-\bar{x}) + g'_y(y-\bar{y}), \quad \forall x \in \mathbb{R}^n, \ y \in \mathbb{R}^m.$$

By setting $y = \bar{y}$, we obtain that $g_x \in \partial_x F(\bar{x}, \bar{y})$, and by setting $x = \bar{x}$, we obtain that $g_y \in \partial_y F(\bar{x}, \bar{y})$, so that $(g_x, g_y) \in \partial_x F(\bar{x}, \bar{y}) \times \partial_y F(\bar{x}, \bar{y})$.

For an example where the inclusion is strict, consider any function whose subdifferential is not a Cartesian product at some point, such as F(x, y) = |x + y| at points (\bar{x}, \bar{y}) with $\bar{x} + \bar{y} = 0$. (b) Since F is the sum of functions of the given form, we have

$$\partial F(\bar{x}, \bar{y}) = \{ (g_x, 0) \mid g_x \in \partial h_1(\bar{x}) \} + \{ (0, g_y) \mid g_y \in \partial h_2(\bar{y}) \} + \{ \nabla h(\bar{x}, \bar{y}) \}$$

[the relative interior condition of the proposition is clearly satisfied]. Since

$$\begin{split} \nabla h(\bar{x},\bar{y}) &= (\nabla_x h(\bar{x},\bar{y}),\nabla_y h(\bar{x},\bar{y})),\\ \partial_x F(\bar{x},\bar{y}) &= \partial h_1(\bar{x}) + \nabla_x h(\bar{x},\bar{y}),\\ \partial_y F(\bar{x},\bar{y}) &= \partial h_2(\bar{y}) + \nabla_y h(\bar{x},\bar{y}), \end{split}$$

the result follows.

3. (Directional Derivative of Extended Real-Valued Functions) Let $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ be a convex function, and let x be a vector in dom(f). Define

$$f'(x;y) = \inf_{\alpha>0} \frac{f(x+\alpha) - f(x)}{\alpha}, \quad y \in \mathbb{R}^n$$

Show the following:

- (a) $f'(x; \lambda y) = \lambda f'(x; y)$ for all $\lambda \ge 0$ and $y \in \mathbb{R}^n$;
- (b) $f'(x; \cdot)$ is a convex function;
- (c) $-f'(x;-y) \le f'(x;y)$ for all $y \in \mathbb{R}^n$

Solution:

(a) Since f'(x; 0) = 0, the relation $f'(x; \lambda y) = \lambda f'(x; y)$ clearly holds for $\lambda = 0$ and all $y \in \Re^n$. Choose $\lambda > 0$ and $y \in \Re^n$. By the definition of directional derivative, we have

$$f'(x;\lambda y) = \inf_{\alpha>0} \frac{f(x+\alpha(\lambda y)) - f(x)}{\alpha} = \lambda \inf_{\alpha>0} \frac{f(x+(\alpha\lambda)y) - f(x)}{\alpha\lambda}.$$

By setting $\beta = \lambda \alpha$ in the preceding relation, we obtain

$$f'(x; \lambda y) = \lambda \inf_{\beta > 0} \frac{f(x + \beta y) - f(x)}{\beta} = \lambda f'(x; y).$$

(b) Let (y_1, w_1) and (y_2, w_2) be two points in $epi(f'(x; \cdot))$, and let γ be a scalar with $\gamma \in (0, 1)$. Consider a point (y_{γ}, w_{γ}) given by

$$y_{\gamma} = \gamma y_1 + (1 - \gamma) y_2, \qquad w_{\gamma} = \gamma w_1 + (1 - \gamma) w_2.$$

Since for all $y \in \Re^n$, the ratio

$$\frac{f(x+\alpha y) - f(x)}{\alpha}$$

is monotonically nonincreasing as $\alpha \downarrow 0$, we have

$$\frac{f(x+\alpha y_1)-f(x)}{\alpha} \le \frac{f(x+\alpha_1 y_1)-f(x)}{\alpha_1}, \quad \forall \ \alpha, \alpha_1, \text{ with } 0 < \alpha \le \alpha_1,$$
$$\frac{f(x+\alpha y_2)-f(x)}{\alpha} \le \frac{f(x+\alpha_2 y_2)-f(x)}{\alpha_2}, \quad \forall \ \alpha, \alpha_2, \text{ with } 0 < \alpha \le \alpha_2.$$

Multiplying the first relation by γ and the second relation by $1 - \gamma$, and adding, we have for all α with $0 < \alpha \leq \alpha_1$ and $0 < \alpha \leq \alpha_2$,

$$\frac{\gamma f(x+\alpha y_1)+(1-\gamma)f(x+\alpha y_2)-f(x)}{\alpha} \leq \gamma \frac{f(x+\alpha_1 y_1)-f(x)}{\alpha_1} + (1-\gamma)\frac{f(x+\alpha_2 y_2)-f(x)}{\alpha_2}.$$

From the convexity of f and the definition of y_{γ} , it follows that

$$f(x + \alpha y_{\gamma}) \le \gamma f(x + \alpha \gamma y_1) + (1 - \gamma) f(x + \alpha y_2).$$

Combining the preceding two relations, we see that for all $\alpha \leq \alpha_1$ and $\alpha \leq \alpha_2$,

$$\frac{f(x+\alpha y_{\gamma})-f(x)}{\alpha} \leq \gamma \frac{f(x+\alpha_1 y_1)-f(x)}{\alpha_1} + (1-\gamma) \frac{f(x+\alpha_2 y_2)-f(x)}{\alpha_2}.$$

By taking the infimum over α , and then over α_1 and α_2 , we obtain

$$f'(x; y_{\gamma}) \le \gamma f'(x; y_1) + (1 - \gamma) f'(x; y_2) \le \gamma w_1 + (1 - \gamma) w_2 = w_{\gamma}$$

where in the last inequality we use the fact $(y_1, w_1), (y_2, w_2) \in \operatorname{epi}(f'(x; \cdot))$ Hence the point (y_{γ}, w_{γ}) belongs to $\operatorname{epi}(f'(x; \cdot))$, implying that $f'(x; \cdot)$ is a convex function.

(c) Since f'(x;0) = 0 and (1/2)y + (1/2)(-y) = 0, it follows that

$$f'(x;(1/2)y + (1/2)(-y)) = 0, \quad \forall y \in \Re^n.$$

By part (b), the function $f'(x; \cdot)$ is convex, so that

$$0 \le (1/2)f'(x;y) + (1/2)f'(x;-y),$$

and

$$-f'(x;-y) \le f'(x;y).$$